Announcements

1) Quiz next week on Thursday, Exam week following on Thursday
2) HW \#3 due today

Continuity
If $f: D \rightarrow \mathbb{R}$
Where D is a region in \mathbb{R}^{2} or $\mathbb{R}^{3}\left(\right.$ or $\left.\mathbb{R}^{n}\right)$,
we say f is continuous at (a, b) or (a, b, c) in D if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)\left(D \text { in } \mathbb{R}^{2}\right)
$$

$$
\lim _{1, x, z) \rightarrow(a, b, c)} f(x, y, z)=f(a, b, c)\left(D \text { in } \mathbb{R}^{3}\right)
$$

The Chain Role (part 1)
Section 14.5
Remember one-variable case:
If $y=f(x)$ and $x=x(t)$, then

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

provided all derivatives exist!

Example 1: Suppose

$$
f(x, y)=x^{2} y
$$

and $x(t)=\cos (t), y(t)=e^{t}$.
Then we can compose to get a function

$$
\begin{aligned}
g: & \mathbb{R} \rightarrow \mathbb{R}, \\
g(t) & =f\left(\cos (t), e^{t}\right) \\
& =\cos ^{2}(t) e^{t}
\end{aligned}
$$

Then

$$
\begin{aligned}
g^{\prime}(t)= & -2 \cos (t) \sin (t) e^{t} \\
& +\cos ^{2}(t) e^{t}
\end{aligned}
$$

Find in a different way:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x y, \frac{\partial f}{\partial y}=x^{2} \\
& x^{\prime}(t)=-\sin (t) \\
& y^{\prime}(t)=e^{t}
\end{aligned}
$$

Compute

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x(t), y(t)) \cdot \frac{d x}{d t} \\
& +\frac{\partial f}{\partial y}(x(t), y(t)) \cdot \frac{d y}{d t} \\
= & 2 \cos (t) e^{t}(-\sin (t)) \\
& +\cos ^{2}(t) e^{t} \\
= & -2 \cos (t) \sin (t) e^{t} \\
& +\cos ^{2}(t) e^{t} \\
= & g^{\prime}(t)
\end{aligned}
$$

(Lain Rule (baby version)

If $z=f(x, y)$ is a function from D in \mathbb{R}^{2} to \mathbb{R} and $x=x(t), y=y(t)$, then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

If $\omega=f(x, y, z)$ and

$$
\begin{aligned}
& x=x(t), y=y(t), z=z(t), \\
& \frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
\end{aligned}
$$

A similar formula holds for $g=f\left(x_{1} x_{2}, \ldots, x_{n}\right)$ where $x_{i}=x_{i}(t)$ for all $1 \leq i \leq n$

$$
\left(f: D \rightarrow \mathbb{R}, D \text { in } \mathbb{R}^{n}\right)
$$

Consequence: (implicit slopes)
Given an equation like $x^{2}+y^{2}=1$, the graph is not always the graph of a function $h: \mathbb{R} \rightarrow \mathbb{R}$. However, the graph is a level curve of the function $f(x, y)=x^{2}+y^{2}$.

Given an equation of the form $f(x, y)=c$, under certain conditions on f, the implicit function theorem says we can solve for y implicitly as a function of x (on small enough open disks of the form

$$
\left.(x-a)^{2}+(y-b)^{2}<r\right)
$$

Regard y as a function of x, consider

$$
g(x)=f(x, y(x))=C
$$

Take the derivative of both sides

$$
\begin{aligned}
0=\frac{d}{d x}(c) & =\frac{d}{d x}(g(x)) \\
& =\frac{\partial f}{\partial x}\left(\frac{d x}{d x}\right)+\frac{\partial f}{\partial y} \frac{d y}{d x}
\end{aligned}
$$

(by baby chain rule)

We get

$$
O=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}
$$

and so if $\frac{\partial f}{\partial y} \neq 0$,

$$
\frac{d y}{d x}=-\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}
$$

Example 2: If

$$
\tan \left(x y^{3}\right)=2
$$

find $\frac{d y}{d x}$
We use $\frac{d y}{d x}=\frac{-\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}$

$$
f(x, y)=\tan \left(x y^{3}\right)
$$

$$
\begin{aligned}
& f(x, y)=\tan \left(x y^{3}\right) \\
& \frac{\partial f}{\partial x}=\sec ^{2}\left(x y^{3}\right) \cdot y^{3} \\
& \frac{\partial f}{\partial y}=\sec ^{2}\left(x y^{3}\right)\left(3 y^{2} x\right) \\
& \frac{d y}{d x}=-\frac{\sec ^{2}\left(x y^{3}\right) y^{3}}{\sec ^{2}\left(x y^{3}\right)\left(3 y^{2} x\right)} \\
& =-\frac{y^{3}}{3 y^{2} x}=-\frac{y}{3 x}
\end{aligned}
$$

Example 2: Suppose

$$
f(x, y)=x^{3}+\sqrt{y}
$$

and now instead of functions of one variable,

$$
\begin{aligned}
& x=x(s, t)=\ln (s+t) \\
& y=y(s, t)=s^{4} t^{8}
\end{aligned}
$$

We can make

$$
g(s, t)=f(x(s, t), y(s, t))
$$

what are $\frac{\partial g}{\partial s}, \frac{\partial g}{\partial t}$?

$$
\begin{aligned}
g(s, t) & =(\ln (s+t))^{3}+\sqrt{s^{4} t^{8}} \\
& =(\ln (s+t))^{3}+s^{2} t^{4} \\
\frac{\partial g}{\partial s} & =\frac{3(\ln (s+t))^{2}}{s+t}+2 s t^{4} \\
\frac{\partial g}{\partial t} & =\frac{3(\ln (s+t))^{2}}{s+t}+4 s^{2} t^{3}
\end{aligned}
$$

